国际米兰对阵科莫 - galaxy /taxonomy/subjects/galaxy en Farewell, Gaia: spacecraft operations come to an end /research/news/farewell-gaia-spacecraft-operations-come-to-an-end <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/milkyway-j13-40kpc-top-d52-2k-dp.jpg?itok=U_LQs0Lz" alt="Artist鈥檚 impression of our galaxy, the Milky Way, based on data from ESA鈥檚 Gaia space telescope." title="Artist&amp;#039;s impression of the Milky Way, Credit: ESA/Gaia/DPAC, Stefan Payne-Wardenaar" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>On 27 March 2025, Gaia鈥檚 control team at ESA鈥檚 European Space Operations Centre switched off the spacecraft鈥檚 subsystems and sent it into a 鈥榬etirement orbit鈥 around the Sun.</p> <p>Though the spacecraft鈥檚 operations are now over, the scientific exploitation of Gaia鈥檚 data has just begun.</p> <p>Launched in 2013, <a href="https://www.esa.int/Science_Exploration/Space_Science/Gaia">Gaia</a> has transformed our understanding of the cosmos by mapping the positions, distances, motions, and properties of nearly two billion stars and other celestial objects. It has provided the largest, most precise multi-dimensional map of our galaxy ever created, revealing its structure and evolution in unprecedented detail.</p> <p>The mission uncovered evidence of past galactic mergers, identified new star clusters, contributed to the discovery of exoplanets and black holes, mapped millions of quasars and galaxies, and tracked hundreds of thousands of asteroids and comets. The mission has also enabled the creation of the best visualisation of how our galaxy might look to an outside observer.</p> <p>鈥淭he data from the Gaia satellite has and is transforming our understanding of the Milky Way, how it formed, how it has evolved and how it will evolve,鈥 said Dr Nicholas Walton from 国际米兰对阵科莫鈥檚 Institute of Astronomy, lead of the <a href="/topics/Gaia">Gaia UK project team</a>. 鈥淕aia has been in continuous operation for over 10 years, faultless, without interruption, reflecting the quality of the engineering, with significant elements of Gaia designed and built in the UK. But now it is time for its retirement. Gaia has finished its observations of the night sky. But the analysis of the Gaia mission data continues. Later in 2026 sees the next Gaia Data Release 4, to further underpin new discovery unravelling the beauty and mystery of the cosmos.鈥</p> <p>Gaia far exceeded its planned lifetime of five years, and its fuel reserves are dwindling. The Gaia team considered how best to dispose of the spacecraft in line with ESA鈥檚 efforts to responsibly dispose of its missions.</p> <p>They wanted to find a way to prevent Gaia from drifting back towards its former home near the scientifically valuable second Lagrange point (L2) of the Sun-Earth system and minimise any potential interference with other missions in the region.</p> <p>鈥淪witching off a spacecraft at the end of its mission sounds like a simple enough job,鈥 said Gaia Spacecraft Operator Tiago Nogueira. 鈥淏ut spacecraft really don鈥檛 want to be switched off.</p> <p>鈥淲e had to design a decommissioning strategy that involved systematically picking apart and disabling the layers of redundancy that have safeguarded Gaia for so long, because we don鈥檛 want it to reactivate in the future and begin transmitting again if its solar panels find sunlight.鈥</p> <p>On 27 March, the Gaia control team ran through this series of passivation activities. One final use of Gaia鈥檚 thrusters moved the spacecraft away from L2 and into a stable retirement orbit around the Sun that will minimise the chance that it comes within 10 million kilometres of Earth for at least the next century.</p> <p>The team then deactivated and switched off the spacecraft鈥檚 instruments and subsystems one by one, before deliberately corrupting its onboard software. The communication subsystem and the central computer were the last to be deactivated.</p> <p>Gaia鈥檚 final transmission to ESOC mission control marked the conclusion of an intentional and carefully orchestrated farewell to a spacecraft that has tirelessly mapped the sky for over a decade.</p> <p>Though Gaia itself has now gone silent, its contributions to astronomy will continue to shape research for decades. Its vast and expanding data archive remains a treasure trove for scientists, refining knowledge of galactic archaeology, stellar evolution, exoplanets and much more.</p> <p>鈥淣o other mission has had such an impact over such a broad range of astrophysics. It continues to be the source of over 2,000 peer-reviewed papers per year, more than any other space mission,鈥 said Gaia UK team member Dr Dafydd Wyn Evans, also from the Institute of Astronomy. 鈥淚t is sad that its observing days are over, but work is continuing in 国际米兰对阵科莫, and across Europe, to process and calibrate the final data so that Gaia will still be making its impact felt for many years in the future.鈥</p> <p>A workhorse of galactic exploration, Gaia has charted the maps that future explorers will rely on to make new discoveries. The star trackers on ESA鈥檚 Euclid spacecraft use Gaia data to precisely orient the spacecraft. ESA鈥檚 upcoming Plato mission will explore exoplanets around stars characterised by Gaia and may follow up on new exoplanetary systems discovered by Gaia.</p> <p>The Gaia control team also used the spacecraft鈥檚 final weeks to run through a series of technology tests. The team tested Gaia鈥檚 micro propulsion system under different challenging conditions to examine how it had aged over more than ten years in the harsh environment of space. The results may benefit the development of future ESA missions relying on similar propulsion systems, such as the LISA mission.</p> <p>The Gaia spacecraft holds a deep emotional significance for those who worked on it. As part of its decommissioning, the names of around 1500 team members who contributed to its mission were used to overwrite some of the back-up software stored in Gaia鈥檚 onboard memory.</p> <p>Personal farewell messages were also written into the spacecraft鈥檚 memory, ensuring that Gaia will forever carry a piece of its team with it as it drifts through space.</p> <p>As Gaia Mission Manager Uwe Lammers put it: 鈥淲e will never forget Gaia, and Gaia will never forget us.鈥</p> <p>The 国际米兰对阵科莫 Gaia DPAC team is responsible for the analysis and generation of the Gaia photometric and spectro-photometric data products, and it also generated the Gaia photometric science alert stream for the duration of the satellite's in-flight operations.</p> <p><em>Adapted from a <a href="https://www.esa.int/Enabling_Support/Operations/Farewell_Gaia!_Spacecraft_operations_come_to_an_end">media release</a> by the European Space Agency.聽</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>The European Space Agency鈥檚 Gaia spacecraft has been powered down, after more than a decade spent gathering data that are now being used to unravel the secrets of our home galaxy.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.esa.int/ESA_Multimedia/Keywords/Description/Milky_Way/(result_type)/images" target="_blank">ESA/Gaia/DPAC, Stefan Payne-Wardenaar</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Artist&#039;s impression of the Milky Way</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> The text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/attribution-sharealike">Attribution-ShareAlike</a></div></div></div> Thu, 27 Mar 2025 10:27:38 +0000 sc604 248809 at Webb Telescope sees galaxy in mysteriously clearing fog of early Universe /research/news/webb-telescope-sees-galaxy-in-mysteriously-clearing-fog-of-early-universe <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/weic2505a-dp.jpg?itok=GSm7BFaa" alt="JADES-GS-z13-1 in the GOODS-S field" title="JADES-GS-z13-1 in the GOODS-S field, Credit: ESA/Webb, NASA, STScI, CSA, JADES Collaboration" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>A key goal of the NASA/ESA/CSA James Webb Space Telescope has been to see further than ever before into the distant past of our Universe, when the first galaxies were forming after the Big Bang, a period know as cosmic dawn.</p> <p>Researchers studying one of those very early galaxies have now made a discovery in the spectrum of its light, that challenges our established understanding of the Universe鈥檚 early history. Their聽<a href="https://www.nature.com/articles/s41586-025-08779-5">results</a> are reported in the journal <em>Nature</em>.</p> <p>Webb discovered the incredibly distant galaxy JADES-GS-z13-1, observed at just 330 million years after the Big Bang. Researchers used the galaxy鈥檚 brightness in different infrared filters to estimate its redshift, which measures a galaxy鈥檚 distance from Earth based on how its light has been stretched out during its journey through expanding space.</p> <p>The NIRCam imaging yielded an initial redshift estimate of 12.9. To confirm its extreme redshift, an international team led by Dr Joris Witstok, previously of the 国际米兰对阵科莫鈥檚 Kavli Institute for Cosmology, observed the galaxy using Webb鈥檚 Near-Infrared Spectrograph (NIRSpec) instrument.</p> <p>The resulting spectrum confirmed the redshift to be 13.0. This equates to a galaxy seen just 330 million years after the Big Bang, a small fraction of the Universe鈥檚 present age of 13.8 billion years.</p> <p>But an unexpected feature also stood out: one specific, distinctly bright wavelength of light, identified as the Lyman-伪 emission radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the Universe鈥檚 development.</p> <p>鈥淭he early Universe was bathed in a thick fog of neutral hydrogen,鈥 said co-author Professor Roberto Maiolino from 国际米兰对阵科莫鈥檚 Kavli Institute for Cosmology. 鈥淢ost of this haze was lifted in a process called reionisation, which was completed about one billion years after the Big Bang.</p> <p>鈥淕S-z13-1 is seen when the Universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-伪 emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.鈥</p> <p>Before and during the epoch of reionisation, neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of coloured glass. Until enough stars had formed and were able to ionise the hydrogen gas, no such light 鈥 including Lyman-伪 emission 鈥 could escape from these fledgling galaxies to reach Earth.</p> <p>The confirmation of Lyman-伪 radiation from this galaxy has great implications for our understanding of the early Universe. 鈥淲e really shouldn鈥檛 have found a galaxy like this, given our understanding of the way the Universe has evolved,鈥 said co-author Kevin Hainline from the University of Arizona. 鈥淲e could think of the early Universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil.鈥</p> <p>The source of the Lyman-伪 radiation from this galaxy is not yet known, but it may include the first light from the earliest generation of stars to form in the Universe. 鈥淭he large bubble of ionised hydrogen surrounding this galaxy might have been created by a peculiar population of stars 鈥 much more massive, hotter and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars,鈥 said Witstok, who is now based at the Cosmic Dawn Center at the University of Copenhagen. A powerful active galactic nucleus, driven by one of the first supermassive black holes, is another possibility identified by the team.</p> <p>The team plans further follow-up observations of GS-z13-1, aiming to obtain more information about the nature of this galaxy and origin of its strong Lyman-伪 radiation. Whatever the galaxy is concealing, it is certain to illuminate a new frontier in cosmology.</p> <p>JWST is an international partnership between NASA, ESA and the Canadian Space Agency (CSA). The data for this result were captured as part of the JWST Advanced Deep Extragalactic Survey (JADES).</p> <p><em><strong>Reference:</strong><br /> Joris Witstok et al. 鈥<a href="https://www.nature.com/articles/s41586-025-08779-5">Witnessing the onset of reionization through Lyman-伪 emission at redshift 13</a>.鈥 Nature (2025). DOI: 10.1038/s41586-025-08779-5</em></p> <p><em>Adapted from an ESA media release.</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Astronomers have identified a bright hydrogen emission from a galaxy in the very early Universe. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Roberto Maiolino</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://esawebb.org/images/weic2505a/" target="_blank">ESA/Webb, NASA, STScI, CSA, JADES Collaboration</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">JADES-GS-z13-1 in the GOODS-S field</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> The text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Wed, 26 Mar 2025 16:00:00 +0000 sc604 248804 at Last starlight for ground-breaking Gaia /research/news/last-starlight-for-ground-breaking-gaia <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/milkyway-25j14-40kpc-edge-10k-copy.jpg?itok=rXUrmwNh" alt="This is a new artist鈥檚 impression of our galaxy, the Milky Way, based on data from ESA鈥檚 Gaia space telescope. " title="This is a new artist鈥檚 impression of our galaxy, the Milky Way, based on data from ESA鈥檚 Gaia space telescope. , Credit: ESA/Gaia/DPAC, Stefan Payne-Wardenaar" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Launched on 19 December 2013, Gaia鈥檚 fuel tank is now approaching empty 鈥 it uses about a dozen grams of cold gas per day to keep it spinning with pinpoint precision. But this is far from the end of the mission. Technology tests are scheduled for the weeks ahead before <a href="https://www.esa.int/Science_Exploration/Space_Science/Gaia">Gaia</a> is moved to its 鈥榬etirement鈥 orbit, and two massive data releases are tabled for around 2026 and the end of this decade, respectively.</p> <p>鈥淭oday marks the end of science observations and we are celebrating this <a href="/subjects/gaia">incredible mission that has exceeded all our expectations</a>, lasting for almost twice its originally foreseen lifetime,鈥 said ESA Director of Science Carole Mundell.</p> <p>鈥淭he treasure trove of data collected by Gaia has given us unique insights into the origin and evolution of our Milky Way galaxy, and has also transformed astrophysics and Solar System science in ways that we are yet to fully appreciate. Gaia built on unique European excellence in astrometry and will leave a long-lasting legacy for future generations.鈥</p> <p>鈥淭oday marks the last day of science data collection from Gaia, these observations to form part of the final data release,鈥 said Dr Nicholas Walton from 国际米兰对阵科莫鈥檚 Institute of Astronomy, lead of the UK Gaia Project team and ESA Gaia Science Team member. 鈥淥ur Gaia team in the UK is now working hard on the incredibly complex data analysis for the upcoming Gaia data releases. These will enable a wealth of new discovery, adding to the science from one of the world鈥檚 most productive science discovery machines.鈥</p> <p><iframe allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen="" frameborder="0" height="315" referrerpolicy="strict-origin-when-cross-origin" src="https://www.youtube.com/embed/5001PDif9nI?si=1T0FWJqvhwVyzZTn" title="YouTube video player" width="560"></iframe></p> <p><strong>Gaia delivers best Milky Way map</strong><br /> <br /> Gaia has been charting the positions, distances, movements, brightness changes, composition and numerous other characteristics of stars by monitoring them with its three instruments many times throughout the mission.</p> <p>This has enabled Gaia to deliver on its primary goal of building the largest, most precise map of the Milky Way, showing us our home galaxy like no other mission has done before.</p> <p>Gaia鈥檚 repeated measurements of stellar distances, motions and characteristics are key to performing 鈥榞alactic archeology鈥 on our Milky Way, revealing missing links in our galaxy鈥檚 complex history to help us learn more about our origins. From detecting 鈥榞hosts鈥 of other galaxies and multiple streams of ancient stars that merged with the Milky Way in its early history, to finding evidence for an ongoing collision with the Sagittarius dwarf galaxy today, Gaia is rewriting the Milky Way鈥檚 history and making predictions about its future.</p> <p><strong>Warning! More ground-breaking science ahead</strong></p> <p>The Gaia scientific and engineering teams are already working on the preparations for Gaia Data Release 4 (DR4), expected in 2026.</p> <p>鈥淭his is the Gaia release the community has been waiting for, and it鈥檚 exciting to think this only covers half of the collected data,鈥 said Antonella Vallenari, Deputy Chair of DPAC based at the Istituto Nazionale di Astrofisica (INAF), Astronomical Observatory of Padua, Italy. 鈥淓ven though the mission has now stopped collecting data, it will be business as usual for us for many years to come as we make these incredible datasets ready for use.鈥</p> <p>鈥淥ver the next months we will continue to downlink every last drop of data from Gaia, and at the same time the processing teams will ramp up their preparations for the fifth and final major data release at the end of this decade, covering the full 10.5 years of mission data,鈥 said Rocio Guerra, Gaia Science Operations Team Leader based at ESA鈥檚 European Space Astronomy Centre (ESAC) near Madrid in Spain.</p> <p><strong>Gaia鈥檚 retirement plan</strong></p> <p>While today marks the end of science observations, a short period of technology testing now begins. The tests have the potential to further improve the Gaia calibrations, learn more about the behaviour of certain technology after ten years in space, and even aid the design of future space missions.</p> <p>After several weeks of testing, Gaia will leave its current orbit around Lagrange point 2, 1.5 million km from the Earth in the direction away from the Sun, to be put into its final heliocentric orbit, far away from Earth鈥檚 sphere of influence. The spacecraft will be passivated on 27 March 2025, to avoid any harm or interference with other spacecraft.</p> <p><strong>Wave farewell to Gaia</strong></p> <p>During the technology tests Gaia鈥檚 orientation will be changed, meaning it will temporarily become several magnitudes brighter, making observations through small telescopes a lot easier (it won鈥檛 be visible to the naked eye). <a href="https://www.cosmos.esa.int/web/gaia/observe-gaia">A guide to locating Gaia has been set up here</a>, and amateur astronomers are invited to share their observations.</p> <p>鈥淕aia will treat us with this final gift as we bid farewell, shining among the stars ahead of its well-earned retirement,鈥 said Uwe Lammers, Gaia Mission Manager.</p> <p>鈥淚t鈥檚 a moment to celebrate this transformative mission and thank all of the teams for more than a decade of hard work operating Gaia, planning its observations, and ensuring its precious data are returned smoothly to Earth.鈥</p> <p><em>Adapted from a European Space Agency <a href="https://www.esa.int/Science_Exploration/Space_Science/Gaia/Last_starlight_for_ground-breaking_Gaia">press release</a>.聽</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>The European Space Agency鈥檚 Milky Way-mapper Gaia has completed the sky-scanning phase of its mission, racking up more than three trillion observations of about two billion stars and other objects over the last decade to revolutionise the view of our home galaxy and cosmic neighbourhood.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.esa.int/Science_Exploration/Space_Science/Gaia/Last_starlight_for_ground-breaking_Gaia" target="_blank">ESA/Gaia/DPAC, Stefan Payne-Wardenaar</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">This is a new artist鈥檚 impression of our galaxy, the Milky Way, based on data from ESA鈥檚 Gaia space telescope. </div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> The text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/attribution-sharealike">Attribution-ShareAlike</a></div></div></div> Wed, 15 Jan 2025 09:22:32 +0000 Anonymous 248643 at 鈥業nside-out鈥 galaxy growth observed in the early universe /research/news/inside-out-galaxy-growth-observed-in-the-early-universe <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/comaprison-galaxies-dp.jpg?itok=TmUdWpZM" alt="Galaxy NGC 1549, seen today and 13 billion years ago" title="Galaxy NGC 1549, seen today and possibly 13 billion years ago, Credit: NASA, ESA, CSA, Sandro Tacchella, William Baker, Ovee Tulaskar" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>This galaxy is one hundred times smaller than the Milky Way, but is surprisingly mature for so early in the universe. Like a large city, this galaxy has a dense collection of stars at its core but becomes less dense in the galactic 鈥榮uburbs鈥. And like a large city, this galaxy is starting to sprawl, with star formation accelerating in the outskirts.</p> <p>This is the earliest-ever detection of inside-out galactic growth. Until Webb, it had not been possible to study galaxy growth so early in the universe鈥檚 history. Although the images obtained with Webb represent a snapshot in time, the researchers, led by the 国际米兰对阵科莫, say that studying similar galaxies could help us understand how they transform from clouds of gas into the complex structures we observe today. The <a href="https://www.nature.com/articles/s41550-024-02384-8">results</a> are reported in the journal <em>Nature Astronomy</em>.</p> <p>鈥淭he question of how galaxies evolve over cosmic time is an important one in astrophysics,鈥 said co-lead author <a href="https://www.tacchella.space/">Dr Sandro Tacchella</a> from 国际米兰对阵科莫鈥檚 Cavendish Laboratory. 鈥淲e鈥檝e had lots of excellent data for the last ten million years and for galaxies in our corner of the universe, but now with Webb, we can get observational data from billions of years back in time, probing the first billion years of cosmic history, which opens up all kinds of new questions.鈥</p> <p>The galaxies we observe today grow via two main mechanisms: either they pull in, or accrete, gas to form new stars, or they grow by merging with smaller galaxies. Whether different mechanisms were at work in the early universe is an open question which astronomers are hoping to address with Webb.</p> <p>鈥淵ou expect galaxies to start small as gas clouds collapse under their own gravity, forming very dense cores of stars and possibly black holes,鈥 said Tacchella. 鈥淎s the galaxy grows and star formation increases, it鈥檚 sort of like a spinning figure skater: as the skater pulls in their arms, they gather momentum, and they spin faster and faster. Galaxies are somewhat similar, with gas accreting later from larger and larger distances spinning the galaxy up, which is why they often form spiral or disc shapes.鈥</p> <p>This galaxy, observed as part of the JADES (JWST Advanced Extragalactic Survey) collaboration, is actively forming stars in the early universe. It has a highly dense core, which despite its relatively young age, is of a similar density to present-day massive elliptical galaxies, which have 1000 times more stars. Most of the star formation is happening further away from the core, with a star-forming 鈥榗lump鈥 even further out.</p> <p>The star formation activity is strongly rising toward the outskirts, as the star formation spreads out and the galaxy grows. This type of growth had been predicted with theoretical models, but with Webb, it is now possible to observe it.</p> <p>鈥淥ne of the many reasons that Webb is so transformational to us as astronomers is that we鈥檙e now able to observe what had previously been predicted through modelling,鈥 said co-author William Baker, a PhD student at the Cavendish. 鈥淚t鈥檚 like being able to check your homework.鈥</p> <p>Using Webb, the researchers extracted information from the light emitted by the galaxy at different wavelengths, which they then used to estimate the number of younger stars versus older stars, which is converted into an estimate of the stellar mass and star formation rate.</p> <p>Because the galaxy is so compact, the individual images of the galaxy were 鈥榝orward modelled鈥 to take into account instrumental effects. Using stellar population modelling that includes prescriptions for gas emission and dust absorption, the researchers found older stars in the core, while the surrounding disc component is undergoing very active star formation. This galaxy doubles its stellar mass in the outskirts roughly every 10 million years, which is very rapid: the Milky Way galaxy doubles its mass only every 10 billion years.</p> <p>The density of the galactic core, as well as the high star formation rate, suggest that this young galaxy is rich with the gas it needs to form new stars, which may reflect different conditions in the early universe.</p> <p>鈥淥f course, this is only one galaxy, so we need to know what other galaxies at the time were doing,鈥 said Tacchella. 鈥淲ere all galaxies like this one? We鈥檙e now analysing similar data from other galaxies. By looking at different galaxies across cosmic time, we may be able to reconstruct the growth cycle and demonstrate how galaxies grow to their eventual size today.鈥</p> <p>聽</p> <p><em><strong>Reference:</strong><br /> William M. Baker, Sandro Tacchella, et al. 鈥<a href="https://www.nature.com/articles/s41550-024-02384-8">A core in a star-forming disc as evidence of inside-out growth in the early Universe</a>.鈥 Nature Astronomy (2024). DOI: 10.1038/s41550-024-02384-8</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Astronomers have used the NASA/ESA James Webb Space Telescope (JWST) to observe the 鈥榠nside-out鈥 growth of a galaxy in the early universe, only 700 million years after the Big Bang.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/" target="_blank">NASA, ESA, CSA, Sandro Tacchella, William Baker, Ovee Tulaskar</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Galaxy NGC 1549, seen today and possibly 13 billion years ago</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> The text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Fri, 11 Oct 2024 09:00:00 +0000 sc604 248231 at Astronomers detect black hole 鈥榮tarving鈥 its host galaxy to death /research/news/astronomers-detect-black-hole-starving-its-host-galaxy-to-death <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/pablosgalaxy-cutout.jpg?itok=-lmDfPGr" alt="Pablo&#039;s Galaxy" title="&amp;#039;Pablo&amp;#039;s Galaxy&amp;#039;, Credit: JADES Collaboration" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>The international team, co-led by the 国际米兰对阵科莫, used Webb to observe a galaxy roughly the size of the Milky Way in the early universe, about two billion years after the Big Bang. Like most large galaxies, it has a supermassive black hole at its centre. However, this galaxy is essentially 鈥榙ead鈥: it has mostly stopped forming new stars.</p> <p>鈥淏ased on earlier observations, we knew this galaxy was in a quenched state: it鈥檚 not forming many stars given its size, and we expect there is a link between the black hole and the end of star formation,鈥 said co-lead author Dr Francesco D鈥橢ugenio from 国际米兰对阵科莫鈥檚 Kavli Institute for Cosmology. 鈥淗owever, until Webb, we haven鈥檛 been able to study this galaxy in enough detail to confirm that link, and we haven鈥檛 known whether this quenched state is temporary or permanent.鈥</p> <p>This galaxy, officially named GS-10578 but nicknamed 鈥楶ablo鈥檚 Galaxy鈥 after the colleague who decided to observe it in detail, is massive for such an early period in the universe: its total mass is about 200 billion times the mass of our Sun, and most of its stars formed between 12.5 and 11.5 billion years ago.</p> <p>鈥淚n the early universe, most galaxies are forming lots of stars, so it鈥檚 interesting to see such a massive dead galaxy at this period in time,鈥 said co-author Professor Roberto Maiolino, also from the Kavli Institute for Cosmology. 鈥淚f it had enough time to get to this massive size, whatever process that stopped star formation likely happened relatively quickly.鈥</p> <p>Using Webb, the researchers detected that this galaxy is expelling large amounts of gas at speeds of about 1,000 kilometres per second, which is fast enough to escape the galaxy鈥檚 gravitational pull. These fast-moving winds are being 鈥榩ushed鈥 out of the galaxy by the black hole.</p> <p>Like other galaxies with accreting black holes, 鈥楶ablo鈥檚 Galaxy鈥 has fast outflowing winds of hot gas, but these gas clouds are tenuous and have little mass. Webb detected the presence of a new wind component, which could not be seen with earlier telescopes. This gas is colder, which means it鈥檚 denser and 鈥 crucially 鈥 does not emit any light. Webb, with its superior sensitivity, can see these dark gas clouds because they block some of the light from the galaxy behind them.</p> <p>The mass of gas being ejected from the galaxy is greater than what the galaxy would require to keep forming new stars. In essence, the black hole is starving the galaxy to death. The <a href="https://www.nature.com/articles/s41550-024-02345-1">results</a> are reported in the journal <em>Nature Astronomy</em>.</p> <p>鈥淲e found the culprit,鈥 said D鈥橢ugenio. 鈥淭he black hole is killing this galaxy and keeping it dormant, by cutting off the source of 鈥榝ood鈥 the galaxy needs to form new stars.鈥</p> <p>Although earlier theoretical models had predicted that black holes had this effect on galaxies, before Webb, it had not been possible to detect this effect directly.</p> <p>Earlier models had predicted that the end of star formation has a violent, turbulent effect on galaxies, destroying their shape in the process. But the stars in this disc-shaped galaxy are still moving in an orderly way, suggesting that this is not always the case.</p> <p>鈥淲e knew that black holes have a massive impact on galaxies, and perhaps it鈥檚 common that they stop star formation, but until Webb, we weren鈥檛 able to directly confirm this,鈥 said Maiolino. 鈥淚t鈥檚 yet another way that Webb is such a giant leap forward in terms of our ability to study the early universe and how it evolved.鈥</p> <p>New observations with the Atacama Large Millimeter-Submillimiter Array (ALMA), targeting the coldest, darkest gas components of the galaxy, will tell us more about if and where any fuel for star formation is still hidden in this galaxy, and what is the effect of the supermassive black hole in the region surrounding the galaxy.</p> <p>The research was supported in part by the Royal Society, the European Union, the European Research Council, and the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).</p> <p><em><strong>Reference:</strong><br /> Francesco D鈥橢ugenio, Pablo G. P茅rez-Gonz谩lez et al. 鈥<a href="https://www.nature.com/articles/s41550-024-02345-1">A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z=3</a>.鈥 Nature Astronomy (2024). DOI: 10.1038/s41550-024-02345-1</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Astronomers have used the NASA/ESA James Webb Space Telescope to confirm that supermassive black holes can starve their host galaxies of the fuel they need to form new stars.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://jades-survey.github.io/" target="_blank">JADES Collaboration</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">&#039;Pablo&#039;s Galaxy&#039;</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> The text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/public-domain">Public Domain</a></div></div></div> Thu, 12 Sep 2024 11:36:56 +0000 sc604 247751 at Earliest detection of metal challenges what we know about the first galaxies /research/news/earliest-detection-of-metal-challenges-what-we-know-about-the-first-galaxies <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/stsci-01hz08fhg5g8q9ddgcsdd74wtj-2-dp.jpg?itok=rj4nXEGu" alt="Deep field image from JWST" title="Deep field image from JWST, Credit: NASA, ESA, CSA, STScI, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (国际米兰对阵科莫), Phill Cargile (CfA)" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Using the James Webb Space Telescope (JWST), an international team of astronomers led by the 国际米兰对阵科莫 observed a very young galaxy in the early universe and found that it contained surprising amounts of carbon, one of the seeds of life as we know it.</p> <p>In astronomy, elements heavier than hydrogen or helium are classed as metals. The very early universe was almost entirely made up of hydrogen, the simplest of the elements, with small amounts of helium and tiny amounts of lithium.</p> <p>Every other element that makes up the universe we observe today was formed inside a star. When stars explode as supernovas, the elements they produce are circulated throughout their host galaxy, seeding the next generation of stars. With every new generation of stars and 鈥榮tardust鈥, more metals are formed, and after billions of years, the universe evolves to a point where it can support rocky planets like Earth and life like us.</p> <p>The ability to trace the origin and evolution of metals will help us understand how we went from a universe made almost entirely of just two chemical elements, to the incredible complexity we see today.</p> <p>鈥淭he very first stars are the holy grail of chemical evolution,鈥 said lead author Dr Francesco D鈥橢ugenio, from the Kavli Institute for Cosmology at 国际米兰对阵科莫. 鈥淪ince they are made only of primordial elements, they behave very differently to modern stars. By studying how and when the first metals formed inside stars, we can set a time frame for the earliest steps on the path that led to the formation of life.鈥</p> <p>Carbon is a fundamental element in the evolution of the universe, since it can form into grains of dust that clump together, eventually forming into the first planetesimals and the earliest planets. Carbon is also key for the formation of life on Earth.</p> <p>鈥淓arlier research suggested that carbon started to form in large quantities relatively late 鈥 about one billion years after the Big Bang,鈥 said co-author Professor Roberto Maiolino, also from the Kavli Institute. 鈥淏ut we鈥檝e found that carbon formed much earlier 鈥 it might even be the oldest metal of all.鈥</p> <p>The team used the JWST to observe a very distant galaxy 鈥 one of the most distant galaxies yet observed 鈥 just 350 million years after the Big Bang, more than 13 billion years ago. This galaxy is compact and low mass 鈥 about 100,000 times less massive than the Milky Way.</p> <p>鈥淚t鈥檚 just an embryo of a galaxy when we observe it, but it could evolve into something quite big, about the size of the Milky Way,鈥 said D鈥橢ugenio. 鈥淏ut for such a young galaxy, it鈥檚 fairly massive.鈥</p> <p>The researchers used Webb鈥檚 Near Infrared Spectrograph (NIRSpec) to break down the light coming from the young galaxy into a spectrum of colours. Different elements leave different chemical fingerprints in the galaxy鈥檚 spectrum, allowing the team to determine its chemical composition. Analysis of this spectrum showed a confident detection of carbon, and tentative detections of oxygen and neon, although further observations will be required to confirm the presence of these other elements.</p> <p>鈥淲e were surprised to see carbon so early in the universe, since it was thought that the earliest stars produced much more oxygen than carbon,鈥 said Maiolino. 鈥淲e had thought that carbon was enriched much later, through entirely different processes, but the fact that it appears so early tells us that the very first stars may have operated very differently.鈥澛</p> <p>According to some models, when the earliest stars exploded as supernovas, they may have released less energy than initially expected. In this case, carbon, which was in the stars鈥 outer shell and was less gravitationally bound than oxygen, could have escaped more easily and spread throughout the galaxy, while a large amount of oxygen fell back and collapsed into a black hole.</p> <p>鈥淭hese observations tell us that carbon can be enriched quickly in the early universe,鈥 said D鈥橢ugenio. 鈥淎nd because carbon is fundamental to life as we know it, it鈥檚 not necessarily true that life must have evolved much later in the universe. Perhaps life emerged much earlier 鈥 although if there鈥檚 life elsewhere in the universe, it might have evolved very differently than it did here on Earth.鈥</p> <p>The <a href="https://arxiv.org/abs/2311.09908">results</a> have been accepted for publication in the journal <em>Astronomy &amp; Astrophysics</em> and are based on data obtained within the <a href="https://jades-survey.github.io/">JWST Advanced Deep Extragalactic Survey (JADES)</a>.</p> <p>The research was supported in part by the European Research Council, the Royal Society, and the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).</p> <p>聽</p> <p><em><strong>Reference:</strong><br /> Francesco D鈥橢ugenio et al. 鈥楯ADES: Carbon enrichment 350 Myr after the Big Bang.鈥 Astronomy &amp; Astrophysics (in press). DOI: <a href="https://arxiv.org/abs/2311.09908">10.48550/arXiv.2311.09908</a></em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Astronomers have detected carbon in a galaxy just 350 million years after the Big Bang, the earliest detection of any element in the universe other than hydrogen.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://webbtelescope.org/contents/media/images/01HZ083EXXCJNE64ERAH2ER2FM" target="_blank">NASA, ESA, CSA, STScI, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (国际米兰对阵科莫), Phill Cargile (CfA)</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Deep field image from JWST</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> The text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Thu, 06 Jun 2024 14:52:26 +0000 sc604 246391 at Earliest, most distant galaxy discovered with James Webb Space Telescope /research/news/earliest-most-distant-galaxy-discovered-with-james-webb-space-telescope <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/galaxy.jpg?itok=axTJAgkp" alt="Infrared image showing JADES-GS-z14-0 galaxy" title="Infrared image showing JADES-GS-z14-0 galaxy, Credit: NASA, ESA, CSA, STScI, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (国际米兰对阵科莫), Phill Cargile (CfA)" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Found in a region near the Hubble Ultra Deep Field by the JWST Advanced Deep Extragalactic Survey (JADES) team, these galaxies mark a major milestone in the study of the early Universe.</p> <p>鈥淭hese galaxies join a small but growing population of galaxies from the first half billion years of cosmic history where we can really probe the stellar populations and the distinctive patterns of chemical elements within them,鈥 said Dr Francesco D鈥橢ugenio of the Kavli Institute for Cosmology at the 国际米兰对阵科莫, one of the team behind the discovery.</p> <p>Because of the expansion of the Universe, the light from distant galaxies stretches to longer wavelength as it travels, an effect known as redshift. In these galaxies, the effect is extreme, stretching by a factor of 15, and moving even the ultraviolet light of the galaxies to infrared wavelengths where only JWST has the capability to see it.</p> <p>Modern theory holds that galaxies develop in special regions where gravity has concentrated the cosmic gas and dark matter into dense lumps known as 鈥榟alos鈥. These halos evolved quickly in the early Universe, rapidly merging into more and more massive collections of matter. This fast development is why astronomers are so eager to find yet earlier galaxies: each small increment moves our eyes to a less developed period, where luminous galaxies are even more distinctive and unusual.</p> <p>The two newly discovered galaxies have been confirmed spectroscopically. In keeping with the collaboration鈥檚 standard naming practice, the galaxies are now known as JADES-GS-z14-0 and JADES-GS-z14-1, the former being the more distant of the two.</p> <p>In addition to being the new distance record holder, JADES-GS-z14-0 is remarkable for how big and bright it is. JWST measures the galaxy at over 1,600 light-years in diameter. Many of the most luminous galaxies produce the bulk of their light via gas falling into a supermassive black hole, producing a quasar, but at this size JADES-GS-z14-0 cannot be this. Instead, the researchers believe the light is being produced by young stars.</p> <p>The combination of the high luminosity and the stellar origin makes JADES-GS-z14-0 the most distinctive evidence yet found for the rapid formation of large, massive galaxies in the early Universe. This trend runs counter to the pre-JWST expectations of theories of galaxy formation. Evidence for surprisingly vigorous early galaxies appeared even in the first JWST images and has been mounting in the first two years of the mission.</p> <p>鈥淛ADES-GS-z14-0 now becomes the archetype of this phenomenon,鈥 said Dr Stefano Carniani of the Scuola Normale Superiore in Pisa, lead author on the discovery paper. 鈥淚t is stunning that the Universe can make such a galaxy in only 300 million years.鈥</p> <p>Despite its luminosity, JADES-GS-z14-0 was a puzzle for the JADES team when they first spotted it over a year ago, as it appears close enough on the sky to a foreground galaxy that the team couldn鈥檛 be sure that the two weren鈥檛 neighbours. But in October 2023, the JADES team conducted even deeper imaging鈥攆ive full days with the JWST Near-Infrared Camera on just one field鈥攖o form the 鈥淛ADES Origins Field.鈥 With the use of filters designed to better isolate the earliest galaxies, confidence grew that JADES-GS-z14-0 was indeed very distant.</p> <p>鈥淲e just couldn鈥檛 see any plausible way to explain this galaxy as being merely a neighbour of the more nearby galaxy,鈥 said Dr Kevin Hainline, research professor at the University of Arizona.</p> <p>Fortunately, the galaxy happened to fall in a region where the team had conducted ultra-deep imaging with the JWST Mid-Infrared Instrument. The galaxy was bright enough to be detected in 7.7 micron light, with a higher intensity than extrapolation from lower wavelengths would predict.</p> <p>鈥淲e are seeing extra emission from hydrogen and possibly even oxygen atoms, as is common in star-forming galaxies, but here shifted out to an unprecedented wavelength,鈥 said Jakob Helton, graduate student at the University of Arizona and lead author of a second paper on this finding.</p> <p>These combined imaging results convinced the team to include the galaxy in what was planned to be the capstone observation of JADES, a 75-hour campaign to conduct spectroscopy on faint early galaxies. The spectroscopy confirmed their hopes that JADES-GS-z14-0 was indeed a record-breaking galaxy and that the fainter candidate, JADES-GS-z14-1, was nearly as far away.</p> <p>Beyond the confirmation of distance, the spectroscopy allows further insight into the properties of the two galaxies. Being comparatively bright, JADES-GS-z14-0 will permit detailed study.</p> <p>鈥淲e could have detected this galaxy even if it were 10 times fainter, which means that we could see other examples yet earlier in the Universe鈥攑robably into the first 200 million years,鈥 says Brant Robertson, professor of astronomy and astrophysics at the University of California-Santa Cruz, and lead author of a third paper on the team鈥檚 study of the evolution of this early population of galaxies. 鈥淭he early Universe has so much more to offer.鈥</p> <p><em><strong>Reference</strong><br /> Carniani, S et al.聽<a href="https://arxiv.org/abs/2405.18485">A shining cosmic dawn: spectroscopic confirmation of two luminous galaxies at聽z鈭14.</a> arXiv:2405.18485聽[astro-ph.GA]</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>The two earliest and most distant galaxies yet confirmed, dating back to only 300 million years after the Big Bang, have been discovered using NASA鈥檚 James Webb Space Telescope (JWST), an international team of astronomers today announced.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">These galaxies join a small but growing population of galaxies from the first half billion years of cosmic history where we can really probe the stellar populations and the distinctive patterns of chemical elements within them</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Francesco D鈥橢ugenio</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://webbtelescope.org/contents/media/images/01HZ083EXXCJNE64ERAH2ER2FM" target="_blank">NASA, ESA, CSA, STScI, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (国际米兰对阵科莫), Phill Cargile (CfA)</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Infrared image showing JADES-GS-z14-0 galaxy</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> The text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Thu, 30 May 2024 11:04:20 +0000 Anonymous 246211 at Astronomers spot oldest 鈥榙ead鈥 galaxy yet observed /research/news/astronomers-spot-oldest-dead-galaxy-yet-observed <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/8115-cutout-caption.jpg?itok=OhC5m1Kw" alt="False-colour JWST image of a small fraction of the GOODS South field, with JADES-GS-z7-01-QU highlighted" title="False-colour JWST image of a small fraction of the GOODS South field, with JADES-GS-z7-01-QU highlighted, Credit: JADES Collaboration" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Using the James Webb Space Telescope, an international team of astronomers led by the 国际米兰对阵科莫 have spotted a 鈥榙ead鈥 galaxy when the universe was just 700 million years old, the oldest such galaxy ever observed.</p> <p>This galaxy appears to have lived fast and died young: star formation happened quickly and stopped almost as quickly, which is unexpected for so early in the universe鈥檚 evolution. However, it is unclear whether this galaxy鈥檚 鈥榪uenched鈥 state is temporary or permanent, and what caused it to stop forming new stars.</p> <p>The <a href="https://www.nature.com/articles/s41586-024-07227-0">results</a>, reported in the journal <em>Nature</em>, could be important to help astronomers understand how and why galaxies stop forming new stars, and whether the factors affecting star formation have changed over billions of years.</p> <p>鈥淭he first few hundred million years of the universe was a very active phase, with lots of gas clouds collapsing to form new stars,鈥 said Tobias Looser from the Kavli Institute for Cosmology, the paper鈥檚 first author. 鈥淕alaxies need a rich supply of gas to form new stars, and the early universe was like an all-you-can-eat buffet.鈥</p> <p>鈥淚t鈥檚 only later in the universe that we start to see galaxies stop forming stars, whether that鈥檚 due to a black hole or something else,鈥 said co-author Dr Francesco D鈥橢ugenio, also from the Kavli Institute for Cosmology.</p> <p>Astronomers believe that star formation can be slowed or stopped by different factors, all of which will starve a galaxy of the gas it needs to form new stars. Internal factors, such as a supermassive black hole or feedback from star formation, can push gas out of the galaxy, causing star formation to stop rapidly. Alternatively, gas can be consumed very quickly by star formation, without being promptly replenished by fresh gas from the surroundings of the galaxy, resulting in galaxy starvation.</p> <p>鈥淲e鈥檙e not sure if any of those scenarios can explain what we鈥檝e now seen with Webb,鈥 said co-author Professor Roberto Maiolino. 鈥淯ntil now, to understand the early universe, we鈥檝e used models based on the modern universe. But now that we can see so much further back in time, and observe that the star formation was quenched so rapidly in this galaxy, models based on the modern universe may need to be revisited.鈥</p> <p>Using data from JADES (JWST Advanced Deep Extragalactic Survey), the astronomers determined that this galaxy experienced a short and intense period of star formation over a period between 30 and 90 million years. But between 10 and 20 million years before the point in time where it was observed with Webb, star formation suddenly stopped.</p> <p>鈥淓verything seems to happen faster and more dramatically in the early universe, and that might include galaxies moving from a star-forming phase to dormant or quenched,鈥 said Looser.</p> <p>Astronomers have previously observed dead galaxies in the early universe, but this galaxy is the oldest yet 鈥 just 700 million years after the big bang, more than 13 billion years ago. This observation is one of the deepest yet made with Webb.</p> <p>In addition to the oldest, this galaxy is also relatively low mass 鈥 about the same as the Small Magellanic Cloud (SMC), a dwarf galaxy near the Milky Way, although the SMC is still forming new stars. Other quenched galaxies in the early universe have been far more massive, but Webb鈥檚 improved sensitivity allows smaller and fainter galaxies to be observed and analysed.</p> <p>The astronomers say that although it appears dead at the time of observation, it鈥檚 possible that in the roughly 13 billion years since, this galaxy may have come back to life and started forming new stars again.</p> <p>鈥淲e鈥檙e looking for other galaxies like this one in the early universe, which will help us place some constraints on how and why galaxies stop forming new stars,鈥 said D鈥橢ugenio. 鈥淚t could be the case that galaxies in the early universe 鈥榙ie鈥 and then burst back to life 鈥 we鈥檒l need more observations to help us figure that out.鈥</p> <p>The research was supported in part by the European Research Council, the Royal Society, and the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).</p> <p>聽</p> <p><em><strong>Reference:</strong><br /> Tobias J聽Looser et al. 鈥<a href="https://www.nature.com/articles/s41586-024-07227-0">A recently quenched galaxy 700 million years after the Big Bang</a>.鈥 Nature (2024). DOI: 10.1038/s41586-024-07227-0</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>A galaxy that suddenly stopped forming new stars more than 13 billion years ago has been observed by astronomers.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/" target="_blank">JADES Collaboration</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">False-colour JWST image of a small fraction of the GOODS South field, with JADES-GS-z7-01-QU highlighted</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> The text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/public-domain">Public Domain</a></div></div></div> Wed, 06 Mar 2024 16:00:10 +0000 sc604 244911 at