
Gold nanotubes 鈥 tiny hollow cylinders one thousandth the width of a human hair 鈥 could be used to treat mesothelioma, a type of cancer caused by exposure to asbestos, according to a team of researchers at the Universities of 国际米兰对阵科莫 and Leeds.听
Gold nanotubes 鈥 tiny hollow cylinders one thousandth the width of a human hair 鈥 could be used to treat mesothelioma, a type of cancer caused by exposure to asbestos, according to a team of researchers at the Universities of 国际米兰对阵科莫 and Leeds.听
Mesothelioma is one of the 鈥榟ard-to-treat鈥 cancers, and the best we can offer people with existing treatments is a few months of extra survival. There鈥檚 an important unmet need for new, effective treatments
Arsalan Azad
In a study published today in journal Small, the researchers demonstrate that once inside the cancer cells, the nanotubes absorb light, causing them to heat up, thereby killing the cells.
More than 2,600 people are diagnosed in the UK each year with mesothelioma, a malignant form of cancer caused by exposure to asbestos. Although the use of asbestos is outlawed in the UK now, the country has the world鈥檚 highest levels of mesothelioma because it imported vast amounts of asbestos in the post-war years. The global usage of asbestos remains high, particularly in low- and middle-income countries, which means mesothelioma will become a global problem.
鈥淢esothelioma is one of the 鈥榟ard-to-treat鈥 cancers, and the best we can offer people with existing treatments is a few months of extra survival,鈥 said Dr Arsalan Azad from the 国际米兰对阵科莫 Institute for Medical Research at the 国际米兰对阵科莫. 鈥淭here鈥檚 an important unmet need for new, effective treatments.鈥
In 2018, the 国际米兰对阵科莫 was awarded 拢10million from the Engineering and Physical Sciences Research Council to help develop engineering solutions, including nanotech, to find ways to address hard-to-treat cancers.
In a collaboration between the 国际米兰对阵科莫 and University of Leeds, researchers have developed a form of gold nanotubes whose physical properties are 鈥榯unable鈥 鈥 in other words, the team can tailor the wall thickness, microstructure, composition, and ability to absorb particular wavelengths of light.
The researchers added the nanotubes to mesothelioma cells cultured in the lab and found that they were absorbed by the cells, residing close to the nucleus, where the cell鈥檚 DNA lies. When the team targeted the cells with a laser, the nanotubes absorbed the light and heated up, killing the mesothelioma cell.
Professor Stefan Marciniak, also from the 国际米兰对阵科莫 Institute for Medical Research and a Fellow at St Catharine鈥檚 College, 国际米兰对阵科莫, added: 鈥淭he mesothelioma cells 鈥榚at鈥 the nanotubes, leaving them susceptible when we shine light on them. Laser light is able to penetrate deep into tissue without causing damage to surrounding tissue. It then gets absorbed by the nanotubes, which heat up and, we hope in the future, could be used to cause localised cancer-cell killing.鈥
The team will be developing the work further to ensure the nanotubes are targeted to cancer cells with less effect on normal tissue.
The nanotubes are made in a two-step process. First, solid silver nanorods are created of the desired diameter. Gold is then deposited from solution onto the surface of the silver. As the gold builds-up at the surface, the silver dissolves from the inside to leave a hollow nanotube.听
The approach advanced by the Leeds team allows these nanotubes to be developed at room temperature, which should make their manufacture at scale more feasible.
Professor Stephen Evans from the School of Physics and Astronomy at the University of Leeds said: 鈥淗aving control over the size and shape of the nanotubes allows us to tune them to absorb light where the tissue is transparent and will allow them to be used for both the imaging and treatment of cancers. The next stage will be to load these nanotubes with medicines for enhanced therapies.鈥
The research was funded by the British Lung Foundation, Victor Dahdaleh Foundation, National Institute for Health Research 国际米兰对阵科莫 Biomedical Research Centre, Royal Papworth Hospital NHS Foundation Trust, Alpha1-Foundation, Medical Research Council and the Engineering & Physical Sciences Research Council.
Reference
Ye, S & Azad, AA et al. Small; 25 Oct 2020: DOI: 10.1002/smll.2003793
The text in this work is licensed under a . Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified.听 All rights reserved. We make our image and video content available in a number of ways 鈥 as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.