Close-up of cigarettes

Scientists in 国际米兰对阵科莫 and London have developed a catalogue of DNA mutation 鈥榝ingerprints鈥 that could help doctors pinpoint the environmental culprit responsible for a patient鈥檚 tumour 鈥 including showing some of the fingerprints left in lung tumours by specific chemicals found in tobacco smoke.

Mutational signatures ... allow us to treat tumours as a crime scene and, like forensic scientists, allow us to identify the culprit 鈥 and their accomplices 鈥 responsible for the tumour

Serena Nik-Zainal

Our DNA, the human genome, comprises of a string of molecules known as nucleotides. These are represented by the letters A, C, G and T. Sometimes, changes occur in the 鈥榮pelling鈥 of our DNA 鈥 an A becomes a G, for example. These changes, known as mutations, can be caused by a number of factors, some environmental, such as exposure to tobacco smoke or to ultraviolet light.

As cells divide and multiply, they make copies of their DNA, so any spelling mistakes will be reproduced. Over time, the number of errors accumulates leading to uncontrolled cell growth 鈥 the development of tumours.

Previously, scientists have had only a limited number of tools for working out the cause of an individual鈥檚 tumour. As it is now possible to study the entire human genome very rapidly, scientists have been able to find all the mutations in a patient鈥檚 cancer, and see patterns 鈥 or 鈥榤utational signatures鈥 鈥 in these tumours.

Now, in a study published in the journal Cell, a team of researchers from the 国际米兰对阵科莫 and King鈥檚 College London have developed a comprehensive catalogue of the mutational signatures caused by 41 environmental agents linked to cancer. In future they hope to expand it further, using similar experimental techniques, to produce an encyclopaedia of mutation patterns caused by environmental agents.

鈥淢utational signatures are the fingerprints that carcinogens leave behind on our DNA, and just like fingerprints, each one is unique,鈥 explains Dr Serena Nik-Zainal from the Department of Medical Genetics and MRC Cancer Unit at the 国际米兰对阵科莫, who led the 国际米兰对阵科莫 Team. 鈥淭hey allow us to treat tumours as a crime scene and, like forensic scientists, allow us to identify the culprit 鈥 and their accomplices 鈥 responsible for the tumour.鈥

The researchers exposed induced pluripotent stem cells 鈥 skin cells that have been reprogrammed to return to their original, 鈥榤aster鈥 state 鈥 to 79 known or suspected environmental carcinogens. The team then used whole genome sequencing to look at the patterns of changes caused by the agents and found that 41 of the suspects left a characteristic fingerprint on the stem cells鈥 DNA.

鈥淲e鈥檝e used this technique to create the most comprehensive catalogue to date of the patterns of DNA damage produced by environmental agents across the whole human genome,鈥 explains Professor David Phillips, who led the King鈥檚 College London team. 鈥淚t should allow us to examine a patient鈥檚 tumour and identify some of the carcinogens they have been exposed to that may have caused the cancer.鈥

Some of the environmental agents studied are known carcinogens, such as polycyclic hydrocarbons and sunlight. For the first time, the researchers also studied some of the individual chemicals found in tobacco smoke and identified which ones cause signatures similar to those found in smokers鈥 lung cancer.

They also identified the fingerprints left behind by common chemotherapy drugs, some dietary chemicals and some present in diesel exhaust fumes. This study shows how human DNA is vulnerable to many agents in our surroundings.

Image: Whole cancer genomes of six different patients: the听plots show all the mutations that are present in whole cancer genomes.

Dr Nik-Zainal illustrates potential uses of the catalogue by referring to the case of Balkan endemic nephropathy (BEN), which is linked to dietary exposure to a plant chemical called aristolochic acid. The mutational signature of this chemical was verified in this study to be virtually identical to the signature found in the tumours of BEN patients. So, although this connection was first made prior to the current study, Dr Nik-Zainal says it is an example of how one might use their catalogue in future.

鈥淥ur reference library will allow doctors in future to identify those culprits responsible for causing cancer,鈥 adds Dr Nik-Zainal. 鈥淪uch information could be invaluable in helping inform measures to reduce people鈥檚 exposure to potentially dangerous carcinogens.鈥

The research was funded by a Wellcome Strategic Award, with additional support from Cancer Research UK and the Medical Research Council.

Reference
Kucab, JE & Zou, X et al. Cell; 2 May 2019; DOI: 10.1016/j.cell.2019.03.001



The text in this work is licensed under a . Images, including our videos, are Copyright 漏国际米兰对阵科莫 and licensors/contributors as identified.听 All rights reserved. We make our image and video content available in a number of ways 鈥 as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.